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Abstract

Rotating structures subject to frictional contact are susceptible to self-excited vibrations that are responsible

for noise problems. In previous work the underlying mechanism has been explained through mathematical–mechanical

models. From practical experience it is known that breaking the symmetry of a rotor can have a stabilizing effect.

The present paper is devoted to a mathematical justification of this phenomenon. At the same time a method

for a quantitative investigation of the influence of asymmetries on the stability behavior is outlined. As an example

a rotating annular Kirchhoff plate in contact with friction pads is studied serving as a minimal model for

brake squeal.

A possible application of the results is the support of the design process for squeal free brake rotors where currently only

experimental methods yield information about the tendency of an asymmetric brake rotor to squeal.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating components are important in many technical applications. If they are thin walled they can be
modeled as shells using two-dimensional curvilinear surface coordinates describing the displacements of the
neutral surface. In many cases the undeformed shells are symmetric with respect to the axis of rotation.
Important examples are hollow shafts occurring in rotor systems, paper calenders and many more. Other
systems, such as bicycle rims, can be modeled as rings with only one curvilinear coordinate. The dynamics of
shells loaded by conservative forces has been under intensive investigation also for the rotating case. The
occurrence of nonconservative forcing due to friction can yield instabilities and has especially been studied in
the context of brake squeal [1–5]. It is known that in some cases breaking of symmetry of the rotor tends to
stabilize the system.

The goal of this paper is to provide a mathematical justification for this phenomenon using perturbation
theory for eigenvalues in the context of Floquet theory developed by Seyranian et al. in Refs. [6–8].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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For the systems of interest the equations of motion are most conveniently set up either in an inertial
frame or in a frame rotating with the rotor. In case of a purely symmetric rotor the former is most convenient
since linear equations with constant coefficients arise. For asymmetric rotors the latter is the more
straightforward approach and yields linear equations with periodic coefficients. The equations of
motion resulting from a Ritz discretization using the most important modes of the nonrotating
system as shape functions represent a general conservative homogeneous system perturbed by small
arbitrary parametric excitation. Apart from the well known instability mechanism of parametric reso-
nance the influence of the symmetries of the occurring matrices on the stability behavior is discussed.
In Section 3 as an example we study a minimal model for a disk brake discussing the structure of
the equations.
2. Linear conservative systems perturbed by periodic linear forcing

The equations of motion for the systems under consideration in a frame rotating with the rotor are of
the form

M€qþ �DDðtÞ_qþ ðKþ �DKðtÞÞq ¼ 0, (1)

where M ¼MT and K ¼ KT are positive definite and DDðtÞ ¼ DDðtþ TÞ, DKðtÞ ¼ DKðtþ TÞ. The
parameter �51 can be interpreted as a norm of multiple parameters depending linearly on � and vanishing
for � ¼ 0. In case the dependence is nonlinear, Eq. (1) contains only the first term of the Taylor series of the
parameters. Without loss of generality we assume T ¼ 2p, M ¼ diagð1; 1; . . . ; 1Þ and K ¼ diagðo2

1; . . . ;o
2
NÞ

since the system can always be brought into this form by an orthogonal transformation using the eigen-
vectors corresponding to the unperturbed problem. It is convenient to work with the equivalent
first-order system

_x ¼ Ax, (2)

A ¼
0 I

�K� �DKðtÞ ��DDðtÞ

" #
; x ¼

q

_q

" #
. (3)

According to Floquet theory, stability of the system is determined by the eigenvalues rj of the monodromy
matrix, which is the fundamental matrix Xðt; �Þ evaluated at t ¼ T with Xð0; �Þ ¼ I2N�2N . If the modulus of
jrjjp1 for all j and all rj are simple or semi-simple then the system is stable. Since the Xðt; �Þ is a smooth
function of � we expand it in a Taylor series with respect to �, i.e.

Xðt; �Þ ¼ Xðt; 0Þ þ
qXðt; �Þ

q�

����
�¼0

�þ � � � . (4)

With the help of the adjoint problem

_y ¼ �ATy (5)

one can calculate the derivatives of the Xðt; �Þ with respect to � evaluated at � ¼ 0 in terms of the derivatives of
A with respect to � [9].

The formula for the first derivative reads

qXðT ; �Þ
q�

����
�¼0

¼ XðT ; 0Þ

Z 2p

0

Yðt; 0ÞT
qAðt; �Þ

q�

����
�¼0

Xðt; 0Þdt, (6)

where in the following we use the notation H ¼
R 2p
0

Yðt; 0ÞTqAðt; �Þ=q�j�¼0Xðt; 0Þdt. Since in our case the
unperturbed problem has constant coefficients and is decoupled we have very simple analytic expressions
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for Xðt; 0Þ and Yðt; 0Þ namely

X ¼

coso1t 0 � � � 0 1
o1
sino1t 0 � � � 0

0 coso2t � � � 0 0 1
o2
sino2t � � � 0

..

. ..
. ..

. ..
.

0 0 cosoNt 0 0 1
oN

sinoNt

�o1 sino1t 0 � � � 0 coso1t 0 � � � 0

0 �o2 sino2t � � � 0 0 coso2t � � � 0

..

. ..
. ..

. ..
.

0 0 �oN sinoNt 0 0 cosoNt

2
66666666666666664

3
77777777777777775

(7)

and the matrix Y ¼ X�1 simply reads

Y ¼

coso1t 0 � � � 0 o1 sino1t 0 � � � 0

0 coso2t � � � 0 0 o2 sino2t � � � 0

..

. ..
. ..

. ..
.

0 0 cosoNt 0 0 oN sinoNt

� 1
o1
sino1t 0 � � � 0 coso1t 0 � � � 0

0 � 1
o2
sino2t � � � 0 0 coso2t � � � 0

..

. ..
. ..

. ..
.

0 0 � 1
oN

sinoNt 0 0 cosoNt

2
666666666666666664

3
777777777777777775

. (8)

We can now calculate how the eigenvalues of XðT ; 0Þ change for small � using bifurcation theory. In our case
the eigenvalues of the unperturbed monodromy matrix XðT ; 0Þ are of the form

r0j ¼ cos 2poj þ i sin 2poj (9)

and obviously appear in complex conjugate pairs. The corresponding eigenvectors read

uj ¼ 0; . . . ; 0;
i

oj

; 0; . . . ; 0; 1; 0; . . . ; 0

� �T

and

vj ¼ ð0; . . . ; 0;�ioj ; 0; . . . ; 0; 1; 0; . . . ; 0Þ
T

for the adjoint problem. Since the unperturbed problem of Eq. (1) is self-adjoint there are always 2N linearly
independent eigenvectors; therefore the spectrum of the unperturbed problem is either simple or semi-simple.
Following Vishik and Lyusternik [10] there is an expansion for the Floquet multipliers and corresponding
eigenvectors of the form

rj ¼ r0j þ �
qrj

q�

����
�¼0

þ � � � , (10)

wj ¼ uj þ �w
�
1j þ � � � , (11)
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where r0j and uj , respectively, correspond to the j-th eigenvalue and eigenvector of the unperturbed problem.
In order to derive the perturbation formulas we have to consider the cases of simple and semi-simple
eigenvalues separately.

2.1. Simple eigenvalues

For a simple Floquet multiplier qrj=q�j�¼0 in the following for simplicity denoted by qrj=q� is given by [9]

qrj

q�
¼

vTj
qXð2p; 0Þ

q�

����
�¼0

uj

vTj uj

¼
r0jv

T
j Huj

vTj uj

. (12)

Due to the simple structure of X, Y, uj and vj and using

vTj

Z 2p

0

Yðt; 0ÞT
qAðt; �Þ

q�

����
�¼0

Xðt; 0Þdt uk ¼

Z 2p

0

vTj Yðt; 0Þ
TqAðt; �Þ

q�

����
�¼0

Xðt; 0Þuk dt (13)

the derivative of rj with respect to � can be calculated as

qrj

q�
¼ �

i

oj

Z 2p

0

Dkjj dt�

Z 2p

0

Ddjj dt

� �
r0j, (14)

where Dkjj, Ddjj are the matrix entries of DK, DD. It is interesting to note that on the main diagonal

of the matrix
R 2p
0 VTYðt; 0ÞTqAðt; �Þ=q�j�¼0Xðt; 0ÞUdt where U (V) is build up form the eigenvectors of

the (adjoint) unperturbed problem, the entries are proportional to the mean value of the perturbation
matrices. Since

qjrjj

q�
¼

1

jr0jj
Re r̄0j

qrj

q�

� �
, (15)

we see that in the first approximation for simple eigenvalues the modulus of the eigenvalues is not influenced
by restoring terms Dkjj and is decreased by dissipative forces Ddjj.

2.2. Semi-simple eigenvalues

For two semi-simple Floquet multipliers rj and rk the first term in Eq. (10) is calculated from Ref. [9] as

det
r0jv

T
j Huj �

qrj

q� r0jv
T
j Huk

r0kv
T
j Huj r0kv

T
kHuk �

qrj

q�

2
4

3
5 ¼ 0 (16)

using again the adjoint problem. The reason for occurrence of a semi-simple eigenvalue can be twofold. Either
we have multiple eigenfrequencies or we have internal resonance. Let us first consider the case of two equal
eigenfrequencies of the unperturbed problem. The corresponding expressions in Eq. (16) read

vTj Huk ¼ �
i

oj

Z 2p

0

Dkjk dt�

Z 2p

0

Ddjk dt (17)

and are proportional to the mean of the perturbation matrices as in the case of simple eigenvalues. From Eq.
(16) qrj=q� can be calculated analytically. We now investigate the case DDjk ¼ 0, i.e. a perturbation only of the
stiffness matrix. It is particularly interesting to see how qrj=q� depends on the symmetries of DK. We therefore
split kkj into a symmetric and a skew-symmetric part

DKjk ¼
Dk̃ jj Dk̃ jk

Dk̃ jk Dk̃kk

" #
þ

0 ñ

�ñ 0

� �
, (18)
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where ñ ¼
R 2p
0

1
2
ðDkjk � DkkjÞdt, Dk̃ jk ¼

R 2p
0

1
2
ðDkjk þ DkkjÞdt. We obtain

qrj

q�
¼

i

2oj

�iDk̃ jj � iDk̃kk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðDk̃ jj � Dk̃kkÞ

2
� 4ðDk̃

2

jk � ñ2Þ
q� �

r0j, (19)

which yields

qjrjj

q�
¼ Re �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðDk̃ jj � Dk̃kkÞ

2
� 4ðDk̃

2

jk � ñ2Þ
q� �

. (20)

It follows for a purely symmetric DKjk that qjrjj=q� ¼ 0 and for a purely skew symmetric DKjk that
qjrjj=q� ¼ �ñ, i.e. one of the Floquet multipliers goes into the other one out of the unit circle and the system
gets unstable. At the same time one can observe from that a skew symmetric perturbation in the first
approximation can be compensated by a perturbation splitting the multiple eigenfrequencies of the
unperturbed system. Given a skew symmetric perturbation it is seen from Eq. (20) that in order to have
stability in the first approximation the condition

ñp1
4
ðDk̃ jj � Dk̃kkÞ

2
þ Dk̃

2

jk ¼
1
4
ðl1 � l2Þ

2 (21)

has to hold, where l1 and l2 are the eigenvalues of the matrix DKjk. Since perturbations with constant
coefficients are contained in Eq. (20) as a special case at this point it can be seen that breaking the symmetry of
a rotor, which can be regarded as a constant symmetric perturbation of the stiffness matrix of the unperturbed
problem, splits up multiple eigenfrequencies and has a stabilizing effect.

Analogously we investigate the case of a pure perturbation of the damping matrix, i.e. DKjk ¼ 0. From

qrj

q�
¼

ioj

2
�Dd̃jj � Dd̃kk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDd̃jj þ Dd̃kkÞ

2
� 4ðDd̃jj Dd̃kk � Dd̃jk Dd̃kjÞ

q� �
(22)

with Dd̃jk ¼
R 2p
0 Ddjk dt we see that for detDDjk40

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDd̃jj þ Dd̃kkÞ

2
� 4ðDd̃jj Dd̃kk � Dd̃jk Dd̃kjÞ

q� �
oDd̃jj þ Dd̃kk (23)

and therefore we get qjrjj=q�o0, hence the system is stabilized in the first approximation.
Let us now consider the case of an internal resonance for the j-th eigenvalue, i.e. we have oj ¼ k=2 such that

the imaginary part of the Floquet multiplier in Eq. (9) vanishes. Instead of a pair of complex conjugate
Floquet multipliers we now have a double eigenvalue r0 ¼ ð�1Þ

k which is semi-simple. The first derivative of
the Floquet multipliers can again be analyzed from Eq. (16). Examining the corresponding eigenvectors we
observe that the formulas for the first derivative of the Floquet multipliers coincide with the ones for a damped
version of Hill’s equation

€qþ �DdjjðtÞ _qþ ðo2
j þ �DkjjðtÞÞq ¼ 0, (24)

which have been calculated in Ref. [11] for a constant damping term. For a periodic damping term the first
derivatives of the corresponding multipliers read

qr
q�
¼ ð�1Þk �cdk � p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ak � bdkÞ2 þ ð2bk � adkÞ2 � ð2ckÞ

2

q� �
, (25)

where

ak ¼
1

2pk

Z 2p

0

sinðktÞDkjjðtÞdt; ad ¼
1

2pk

Z 2p

0

sinðktÞDdjjðtÞdt,

bk ¼
1

2pk

Z 2p

0

cosðktÞDkjjðtÞdt; bd ¼
1

2pk

Z 2p

0

cosðktÞDdjjðtÞdt,

ck ¼
1

2pk

Z 2p

0

DkjjðtÞdt; cd ¼
1

2pk

Z 2p

0

DdjjðtÞdt.
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From the truncated expansion

rj ¼ r0j þ
qrj

q�
þ Oð�Þ ¼ ð�1Þkð1þ ð�cdk � p

ffiffiffiffi
D
p
ÞÞ þ Oð�Þ, (26)

D ¼ ð2ak � bdkÞ2 þ ð2bk � adkÞ2 � ð2ckÞ
2 (27)

of the Floquet multiplier we observe that the system tends to get unstable if the term under the square root is
larger than jcdkj. In particular this is the case when damping is absent and describes vertices of the instability
regions for the Hill and the Mathieu equation [9,11]. From Eq. (25) we see that damping has a stabilizing
effect provided

cd4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

d þ b2
d

q
.

For increasing k the damping terms dominate, since they are multiplied by k.

2.3. Discussion

The results obtained in the previous sections obviously only have a local character. They show that in the
vicinity of a semi-simple eigenvalue a skew symmetric perturbation has a particularly strong destabilizing
effect. At the same time it has to be noted that for qjrj=q� ¼ 0, r moves along the unit circle in the complex
plane in the first approximation. The system can still be destabilized by higher order terms. In particular this is
the case for constant coefficient M, DG, K, DN systems with very small gyroscopic terms that are almost
always unstable [1,12,13] although neither DG nor DN appear in the first derivative of the expansion for the
Floquet multipliers provided the spectrum of the unperturbed problem is simple.

Only in specific cases, for example for systems with reversible symmetry (i.e. invariant under time reversal)
we can conclude that in the absence of damping the system has a double eigenvalue at the stability boundary
[14]. In Ref. [14, p. 133] it is shown that if DDð�tÞ ¼ �DDðtÞ and DKð�tÞ ¼ DKðtÞ, then the system is invariant
under time reversal.

Despite of having only local character, the perturbation formulas indicate that splitting up the
eigenfrequencies of the unperturbed problem tends to stabilize the system, especially when additional
damping is present.

2.4. Numerical example

Consider equation (1) with

DD ¼ d cos2 t
1 0

0 1

� �
; DK ¼ n cos2 t

0 �1

1 0

� �
; K ¼

o2
1 0

0 o2
2

" #
. (28)
0 0.025 0.05
−0.05

0

0.05
�1 = �2 = 0.6

0 0.025 0.05
−0.05

0

0.05

�n

�d

�1 = 0.6, �2 = 0.61

�n

�d

Fig. 1. Stable regions for a symmetric and an asymmetric system (dot: stable, cross: unstable).
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In case we chose a symmetric system, i.e. o1 ¼ o2 we obtain from Eq. (16)

qr1
q�
¼ �dp�

np
o1

� �
r0 (29)

and hence

qjr1j
q�
¼ �o1pd � np (30)

i.e. we have instable regions near � ¼ 0. For the asymmetric system o1ao2 there is no instable region for small
� and d40 as discussed in the previous section. For the symmetric and the asymmetric case the stable and
instable regions in the parameter space �n, �d are shown in Fig. 1 using Floquet theory. The lines in the left
plot stand for approximations of the stability boundaries that can be calculated from Eq. (30) as n ¼ �o1d for
the symmetric case o1 ¼ o2 ¼ 0:6.

3. Application to a disk brake model

In this section as an example of a rotating continuum with equations of motion of the type (1) we consider
the disk brake model shown in Fig. 2, which for a completely symmetric brake rotor has been previously
studied in Ref. [5]. The brake rotor is modeled as a rotating Kirchhoff plate which is in contact with pointwise
elastic friction pads consisting of massless pins which are pressed on the surface of the brake disk by
prestressed springs (cf. Fig. 3). Since the analysis in Ref. [5] showed that in- and out-of-plane vibrations are
ex

ey

ez

k

�h, E, �

Ω

ex

ey

ez

�̂p

O

ri

ro

rpi

rpo
A

B

�

Fig. 2. Kirchhoff plate in distributed frictional contact.

k, N0

P̄

P

RP

NP

RP

NP

h
2

Fig. 3. Pin in contact with the plate surface.
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decoupled and the equations for the out-of-plane vibrations decide the stability behavior, we concentrate on
their investigation. Whereas in Ref. [5] a purely symmetric disk with infinitely many double eigenfrequencies
was investigated setting up the equations of motion with respect to a stationary frame, we now consider the
consequences of breaking the rotational symmetry.

For an asymmetric disk, the direct solution of the equations of motion via a matrix eigenvalue problem is no
longer possible, since the current orientation of the plate has to be taken into account. Nevertheless,
eigenfunctions of the corresponding nonrotating asymmetric plate can be conveniently used to describe the
vibrations in a rotating coordinate system. The equations of motion can be derived from the principle of
virtual work where the position vectors of the material points of the plate and the brake pads are expressed in
coordinates of the rotating frame. A point M on the neutral plane of the plate has the position vector

pM ¼ rer þ wðr;j; tÞez, (31)

where r is a (constant) radius and wðr;j; tÞ describes the displacement of the plate’s neutral plane. The unit
vectors er and ej depend on time, and their time derivatives are

_er ¼ Oez � er ¼ Oej, (32)

_ej ¼ Oez � ej ¼ �Oer, (33)

which has to be considered when taking derivatives of vectors expressed in the rotating frame. We
therefore have

_pM ¼ rOej þ _wðr;j; tÞez. (34)

Using Kirchhoff’s kinematical assumptions, the position vector of a point on the surface of the plate is

pðr;j; tÞ ¼ rer þ wðr;j; tÞez �
h

2
erðr;j; tÞ, (35)

where erðr;j; tÞ is the vector normal to the plate’s neutral plane.
We now exemplarily concentrate on the upper contact point P of the plate currently coinciding with P̄, the

corresponding point on the brake pad (cf. Fig. 3), and calculate its velocity. The position vector from O to P is
given by

pP ¼ pðrP;jP; tÞ

¼ rPerðjPÞ þ wðrP;jP; tÞez �
h

2
erðrP;jP; tÞ, (36)

where rP and jP is in the linear approximation equal to the position of the pad in the undeformed
configuration [5]. The velocity vP of P (the material point on the surface of the plate) follows from time
differentiation of pP, noting that rP and jP are constants in this case. On the other hand, the velocity vP̄ of P̄
(the material point of the pad) follows from time differentiation of pP with time dependent rP and jP. The
contact forces between each of the pins belonging to a pad and the disk are calculated from a force balance on
each pin in vertical direction and using Coulomb’s law of friction, i.e. RP ¼ mNP. The direction of the friction
force is always opposite to the relative velocity of the contact point on the pad P̄ and the contact point on the
disk P, the normal force is perpendicular to the surface of the plate. It is assumed that the rotational speed of
the disk is sufficiently high such that the relative velocity of between the contact points P̄ and P does not
change sign. The discretized linear equations follow from the principle of virtual work and in the linearized
version read

M€qþDðtÞ_qþ ðKþNðtÞÞq ¼ 0, (37)

where M ¼ diagðMiÞ, K ¼ diagðo2
i MiÞ and Mi is the normalization factor to the i-th eigenform corresponding

to eigenfrequency oi of the nonrotating disk. The matrices DðtÞ ¼ Dðtþ 2p=OÞ and NðtÞ ¼ Nðtþ 2p=OÞ are
periodic matrices and the plate is discretized by

wðr;j; tÞ ¼
XN

i¼1

W iðr;jÞ qiðtÞ (38)
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using adequate shape functions W iðr;jÞ. The generic element of the matrices N and D are

Nij ¼

Z
B

2kW iW j �
hkm

r
W i

;jW j þ ð1þ m2Þ
hN0

r2
W i

;jW j
;j �

h2N0m
2r3

W i
;jjW j

;j

�

þ
h2N0m
2r2
ðW i

;jW j
;r �W i

;rW
j
;jÞ þ hN0W

i
;rW

j
;r �

h2N0m
2r

W i
;jrW

j
;r

þ
dO hm

r
W i

;jW j
;j � 2 dOW iW j

;j

�
dB (39)

and

Dij ¼

Z
B

2dW i W j �
dhm

r
W i

;jW j þ
h2N0m
2rO

W i
;rW

j
;r

� �
dB, (40)

respectively, where Z
B

ð
�
ÞdB ¼

Z rpa

rpi

Z ĵp�Ot

�ĵp�Ot

ð
�
Þ rdrdj (41)

is the integration over the area of the brake pads. In contrast to the equations obtained in the inertial frame [5]
we now have periodic coefficients in the matrices. For parameters corresponding to a disk brake, the norms of
the matrices Nij and Dij are small compared to the mass and stiffness matrices. Therefore they can be
interpreted as perturbation matrices and the equations of motion can be written in form (1) such that the
observations made in the previous sections apply. Inspecting (40) we observe that the entries on the main
diagonal are strictly positive since h=r51. This remains true if d ¼ 0, which means that no additional damping
is introduced in the pads. We therefore conclude that for a simple spectrum of the unperturbed problem and
provided that no internal resonances occur, the trivial solution of Eq. (37) is asymptotically stable
independently of the particular values of the parameters. As to the case of internal resonances, we saw from
Eq. (25) that in the presence of damping with a sufficiently high mean value, for higher order resonances no
instabilities occur. Since the rotational speed of the disk is low compared to its eigenfrequencies and the
diagonal terms in Eq. (40) are nonnegative these should not be important for squeal problems. It is interesting
to note that the setting investigated in Ref. [5] is a special case of the investigation performed here. Due to the
symmetry of the plate studied in Ref. [5], in the rotating frame semi-simple eigenvalues arise and, depending
on the parameters, stable and unstable configurations are possible. In a two parameter space in the vicinity of
the unperturbed problem the stability region was described by an angle. In conclusion we see that braking the
symmetry of the rotor avoids semi-simple eigenvalues and therefore stabilizes the system. Due to the presence
of damping, the higher order internal resonances occurring in the brake example cannot destabilize the system.

In addition to these qualitative predictions, Eq. (37) can be also used for quantitative studies on asymmetric
disks. A promising approach is to perform a finite element analysis on an asymmetric disk and to study the
rotating disk with pads using the shape functions in Eq. (37). Due to the small rotational frequencies of the
disk compared to the eigenfrequencies, the integration times using Floquet theory are however long and may
yield numerical uncertainties. Nevertheless this method has been successfully used in Ref. [15] to study
asymmetries. Considering the high uncertainty in parameter values, another approach could be the
investigation of structured pseudospectra of the monodromy matrix.
4. Conclusion

In this paper we give a mathematical justification for the approach of breaking symmetries in order to
stabilize rotating continua. Mathematically we study a general linear conservative system perturbed by small
arbitrary parametric excitation. In addition to the well know instability mechanism of parametric resonance
we clarify the influence of the symmetries of the perturbation matrices on the stability behavior of the system.
The results are relevant for any kind of rotating shells or plates with small nonconservative position forces.
As an important example a minimal model for an asymmetric disk brake was discussed.
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